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Following the end of over a century of intensive commercial whaling in 1986, the

monitoring and assessment of sperm whale populations is essential for guiding

management and conservation decisions for their recovery. Species distribution

models (SDMs) are a useful tool for examining and predicting cetacean distribution

patterns and typically incorporate visual, ship-based observations. However,

understanding sperm whale distribution and habitat use based solely on surface

visual observations is challenging due to the significant amount of time sperm

whales spend foraging at depth. For the endangered sperm whale population

occurring in Hawaiian waters, we used visual and passive acoustic data collected

during four annual NOAA marine mammal line-transect surveys and a suite of

biologically relevant environmental variables to develop SDMs within a generalized

additive modeling framework to study the distribution of sperm whale groups

throughout the island chain. Additionally, the passive acoustic data allowed us to

differentiate sperm whale groups as foraging or non-foraging based on their click

types to account for differences in distribution and behavior within the archipelago.

Foraging groups were predicted primarily in the northwestern region of the

archipelago between Laysan Island and Pearl and Hermes Reef as well as north

of Maui and Hawaiʻi in the main Hawaiian Islands. Non-foraging groups were

predicted to be more uniformly distributed throughout the archipelago. Foraging

whale models selected temperature at 584m depth, surface chlorophyll, and

location, while the only significant variables for non-foraging whale models

included the standard deviation of sea surface height and location. Each

variable provides insight into the oceanographic processes influencing prey

abundance and, thus, sperm whale foraging behavior. This study furthers our

understanding of the distribution patterns for the sperm whale population in

Hawaiʻi and contributes methods for building SDMs with visual and passive

acoustic data that may be applied to other cetacean species.
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1 Introduction

Cetaceans face a number of threats throughout the world’s

oceans, which has resulted in the decline of numerous

populations (Magera et al., 2013; Avila et al., 2018). Sperm

whales (Physeter macrocephalus) are a cosmopolitan, deep-

diving cetacean species listed globally as vulnerable by the

IUCN (Taylor et al., 2019) with populations in U.S. waters

listed as endangered under the U.S. Endangered Species Act.

Following the end of over a century of intensive commercial

whaling in 1986, monitoring and assessment of sperm whale

populations are essential for guiding management and

conservation decisions for their recovery. Using species

distribution models (SDMs) to develop a quantitative

understanding of the environmental factors influencing sperm

whale distributions can lead to a better understanding of their

ecology as well as identify important habitats that may overlap

with potentially harmful anthropogenic activities (Azzellino

et al., 2012; Redfern et al., 2013; Roberts et al., 2016).

Understanding the ecological role of cetaceans relies, in part,

on baseline knowledge of their distribution in oceanic waters.

SDMs are a common statistical tool that requires ample field

observations to precisely estimate these biological patterns,

which can provide useful insight for management and

conservation strategies (Elith and Leathwick, 2009; Robinson

et al., 2017; Melo-Merino et al., 2020). For cetacean SDMs, visual

observations are primarily used but recent studies have also

incorporated satellite telemetry data (Abecassis et al., 2012;

Abrahms et al., 2019) and passive acoustic data (Carlén et al.,

2018; Fleming et al., 2018) to increase sample sizes and support

more ecologically-based inferences for species that spend the

majority of their time underwater.

Multiple studies have used visual sightings and passive

acoustic data to study sperm whale distribution patterns with

respect to their environment (Jaquet and Whitehead, 1999;

Jaquet and Gendron, 2002; Fiori et al., 2014; Fiedler et al.,

2018). The unique characteristics of sperm whale clicks make

it possible to detect and classify them in the absence of visual

observations (Backus and Schevill, 1966). Sperm whales produce

several types of clicks depending on their behavior and

demographics, which are differentiated by the timing between

clicks, or interclick intervals (ICIs), (Whitehead and Weilgart,

1990; Jaquet et al., 2001; Marcoux et al., 2006; Watwood et al.,

2006). Codas are repeated stereotyped sequences of clicks lasting

approximately 3 s with highly variable group-specific ICIs (Gero

et al., 2016; Oliveira et al., 2016; Hersh et al., 2021). Regular clicks

(ICI = 0.5–1.5 s) and creaks (ICI <0.5 s) are associated with

foraging (Jaquet et al., 2001; Miller et al., 2004; Watwood et al.,

2006) while slow clicks (ICI >1.5 s) are produced primarily by

male sperm whales (Madsen et al., 2002; Oliveira et al., 2013).

The existing knowledge on spermwhale clicks makes it feasible to

use passive acoustic data in SDMs to include submerged or diving

whales that would otherwise be excluded from the analysis

(Gannier and Praca, 2006; Pirotta et al., 2011; Yack et al.,

2016; Stanistreet et al., 2018; Diogou et al., 2019).

Sperm whales are one of the most frequently encountered

species during visual and acoustic line-transect cetacean surveys

in the Hawaiʻi Exclusive Economic Zone (EEZ) (Bradford et al.,

2017; Yano et al., 2018). To date, three studies have developed

SDMs for sperm whales (and other cetacean species) in the

Hawaiʻi EEZ using line-transect sighting data (Forney et al.,

2015; Oleson et al., 2015; Becker et al., 2021) but they did not

incorporate whale behavior (i.e., foraging or non-foraging) into

the analyses. Sampling units in Forney et al. (2015) and Becker

et al. (2021) were derived following methods in Becker et al.

(2010), which divided the survey effort into 5-km segments and

assigned sighting data and environmental predictor values to

each segment midpoint along the transect. Models selected static

environmental variables (distance to land and latitude) as the

important predictors, describing a broad pattern of increasing

sperm whale density towards the northwestern region of the

Hawaiʻi EEZ (Forney et al., 2015; Becker et al., 2021).

An exploratory study conducted by Oleson et al. (2015)

attempted to improve the sperm whale SDMs for the Hawaiʻi

EEZ by building models using the same methods as Forney et al.

(2015) but also incorporating passive acoustic data collected with

towed line arrays of hydrophones. The study included data from

a single 2010 survey to compare the predictive power and

important variables resulting from SDMs that included only

sighting data to SDMs built with only acoustic data. The

acoustic-based models selected more dynamic environmental

variables (e.g., sea surface temperature and sea surface height),

compared to the sighting-based models. However, the accuracy

of the acoustic-based models was unclear due to the variability in

predictions when modeling different subsets of the acoustic data.

It was theorized that by assigning the acoustic data to the segment

midpoint of the sampling units along the trackline, the

environmental data may have been incorrectly associated with

sperm whales acoustically detected up to tens of kilometers from

the trackline (Barlow and Taylor, 2005). To overcome this

potential issue, a novel method was developed to localize

deep-diving cetaceans using towed line array acoustic data

(Barkley et al., 2021).

Here, we develop an SDM framework capable of

incorporating both sighting and passive acoustic data with a

more accurate localization procedure to evaluate distribution

patterns of sperm whale groups in the Hawaiʻi EEZ. We base our

modeling decisions on known aspects of sperm whale biology

Frontiers in Remote Sensing frontiersin.org02

Barkley et al. 10.3389/frsen.2022.940186

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.940186


and ecology and use the sperm whale click types to differentiate

between foraging and non-foraging groups to generate behavior-

based SDMs not attempted by prior studies (Forney et al., 2015;

Oleson et al., 2015; Becker et al., 2021). We hypothesize that

foraging whales occur primarily in deep, more productive

offshore waters where they may be more likely to encounter

prey compared to non-foraging whales. This research contributes

new information about the relationship between sperm whale

distribution and environmental features of the Hawaiʻi EEZ,

develops new techniques to incorporate visual and passive

acoustic data into SDMs, and leverages behavioral information

from the acoustic data to examine the habitat

preferences between foraging and non-foraging sperm whale

groups.

2 Methods

2.1 Data collection and processing

Observational data were collected within the Hawaiʻi EEZ by

the National Oceanic and Atmospheric Administration’s

(NOAA) Pacific Islands Fisheries Science Center (PIFSC)

during cetacean and ecosystem assessment line-transect

surveys conducted in 2010, 2013, 2016, and 2017. All surveys

followed systematic line-transect sampling protocols described in

detail in Yano et al. (2018). Briefly, three observers rotated

through three positions searching for cetaceans during

daylight hours. Observers along the port and starboard sides

used 25 × 150 mounted binoculars while a center observer

searched with 7 × 50 binoculars and unaided eyes. If animals

were seen within 5.6 km (3 nmi) of the trackline, observers would

direct the ship to turn towards the group for species identification

and group size estimates.

Continuous acoustic recordings were simultaneously

collected using a towed line array of hydrophones. Array

configuration varied between surveys, but all arrays contained

4–hydrophones capable of recording frequencies between at least

2–40 kHz. Detailed specifications of passive acoustic arrays and

equipment are included in Table 1. Two acousticians aurally and

visually monitored the real-time recordings for all cetacean

species during daylight hours. A suite of software enabled

acousticians to detect and localize vocalizing cetacean groups

using 2D target motion analysis (TMA) (ISHMAEL, Mellinger,

2002; PAMGuard, Gillespie et al., 2008). Resulting location

estimates were left/right ambiguous due to the linear array

design and limitations of 2D TMA. However, the left/right

ambiguity was resolved for some localized groups by turning

the ship. For each acoustic encounter, or acoustically detected

cetacean group, acousticians documented the timestamp of the

ship’s trackline location upon first and last detection, the types of

vocalizations recorded, the estimated perpendicular distances,

and species classification when possible.

When sperm whales were visually sighted or acoustically

detected based on their recognizable broadband, low frequency

(2–15 kHz) echolocation clicks (Backus and Schevill, 1966), each

team initiated a specific data collection protocol to reduce bias in

visual abundance estimates and collect the necessary information

for post-survey acoustic data analyses. Details about the visual

and acoustic sperm whale protocols are found in Yano et al.

(2018). Briefly, if whales were first visually observed within

5.6 km, at least 70 min were spent counting the number of

whales within a group to account for asynchronous dive

behavior. If sperm whales were first acoustically detected

TABLE 1 Details and specifications of the towed line arrays and equipment used for collecting passive acoustic monitoring data during four line-
transect surveys conducted in the Hawaiian archipelago.

PIFSC/SWFSC 2010
(HICEAS)

PIFSC 2013
(PACES)

PIFSC 2016
(HITEC)

PIFSC/SWFSC 2017
(HICEAS)

NOAA ship and Dates McArthur II: August 13 - 1 December
2010

Oscar Elton Sette: May
7 - 5 June 2013

Oscar Elton Sette: June
28 - 27 July 2016

Reuben Lasker: August 20 - 1 December
2017

Oscar Elton Sette: September
2 - 29 October 2010

Oscar Elton Sette: July 6 - 10 October
2017

Hydrophone EDO EC65 APC 42–1,021 HTI-96-MIN HTI-96-MIN

Hydrophone flat response
range

2–40 kHz 2–40 kHz 2–85 kHz 2–85 kHz

A/D converter MOTU mK3 MOTU mK3 SA Instrumentation
SAIL DAQ

SA Instrumentation SAIL DAQ

Sampling rate 192 kHz 192 kHz 500 kHz 500 kHz

Recorder bit depth/
resolution

16-bit 16-bit 16-bit 16-bit

Pre-amplifier flat response
range

>2 kHz >2 kHz >2 kHz 2–50 kHz

High pass filter 1.5 kHz 1.5 kHz 1.5 kHz 1.5 kHz
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without corresponding visual observations, the whales were

tracked and localized until they passed 90 of the towed array.

If the resulting acoustic localization occurred within 5.6 km of

the trackline, then the ship was directed towards the whales to

attempt visual group size estimates. Whale groups detected

beyond 5.6 km by either method were not pursued due to the

time needed to divert so far from the trackline, and because

groups near this distance are so infrequently sighted that the

effective strip width derived for the visual survey is well within

this distance (Buckland et al., 2001; Thomas et al., 2006).

2.2 Model data set

All sperm whale acoustic encounters included in the model

data set were validated for the presence of echolocation clicks by

visually and aurally examining spectrograms of the acoustic data

at the time of each encounter using Raven Pro (2048 FFT, Hann

window, 50% overlap, version 1.5; Bioacoustics Research

Program, 2017). The types of echolocation clicks present in

each encounter were determined by ICI measurements.

Acoustic encounters that included foraging clicks (i.e., regular

clicks or creaks) were labeled as “foraging” groups but could also

include other click types. Groups that did not produce foraging

clicks during the acoustic encounter were labeled as “non-

foraging” and included social groups producing codas and/or

male sperm whales producing slow clicks. The term “non-

foraging” does not imply fasting but indicates that we did not

acoustically detect foraging clicks for the duration of the acoustic

encounter and presumed that these groups foraged at other

times.

Model data sets for the foraging and non-foraging sperm

whale groups included three types of encounters: an acoustic

encounter with a concurrent visual sighting (i.e., sighted

acoustic), a trackline acoustic encounter, and a localized

acoustic encounter. The encounter type dictated which

location of the sperm whale group was included in the model

data set. For sighted acoustic encounters, we included the

location documented by the visual observers. Trackline

acoustic encounters included the ship’s location on the

trackline at the time of first detection of sperm whales since

some groups could not be localized for various reasons (e.g., the

whales stopped vocalizing, the ship prematurely turned towards

another sighting, or equipment malfunction), but still provided

behavioral information to the SDMs.

All localized acoustic encounters were reanalyzed using the

model-based localization algorithm described in Barkley et al.

(2021) to incorporate more accurate group locations and distance

estimates into the modeling data sets. Many of the localized

acoustic encounters were left/right ambiguous due to the linear

array design and lack of deviation in the ship’s course during the

encounter. Since only one location could be included in the

model data set, we configured SDMs that used only the left

locations, only the right locations, and a random selection of left

or right locations to evaluate differences in model results. Results

were similar between SDMs (Table 2) supporting the use of a

random selection of the left and right locations in the foraging

and non-foraging SDMs.

2.3 Model configuration

Each SDM included data collected when visual observers and

acousticians were simultaneously on effort actively monitoring

for whales while the ship traveled straight to ensure the integrity

of acoustic localization results. We used the R programming

language (version 4.0.2; R Core Team, 2020) and applied the

straightPath function in the ‘PAMmisc’ R package (version 1.6.0;

Sakai, 2020) to calculate all straight sections of trackline using the

ship’s GPS and heading data. The function compared the ship’s

average heading from a 2-min period with the average heading

from the previous 8 min. A turn was indicated if the difference

between the averaged headings exceeded a threshold of 20°. All

data points collected during a turn were excluded from the

data set.

Since the number of whales could not be estimated from

the localized and trackline acoustic encounters, we used the

number of sperm whale groups per grid cell as the unit of the

response variable. A gridding method was developed to

account for the varying amount of effort occurring

throughout each survey. We used customized R functions

to overlay grids across the study area and computed an

acoustic detection function to calculate survey effort in

units of area (km2). The detection function described the

relationship between the distance and detection probability

of sperm whales and consisted of distance estimates from the

localized acoustic encounters to account for the maximum

estimated sperm whale detection range within the data set

(Figure 1). We modeled the detection function using the

‘Distance’ R package (Miller et al., 2019) to fit a half-

normal model to a histogram of the acoustic distance

estimates. A truncation distance of 16.22 km was used to

remove the largest 3% of distances to improve the fit of the

half-normal model as well as determine the 16 km × 16 km

spatial resolution of the grid cells (i.e., 256 km2 grid cells).

We calculated survey effort per grid cell by summing the

product of the survey area and detection probability along all

straight trackline segments (Figure 2). The survey area was

computed using a series of 1 km × 16.22 km rectangles that

extended perpendicularly on either side of the trackline

(Figure 2A). These rectangles were then equally divided

into 10 pieces that paralleled the trackline. Each piece was

extended vertically to the equivalent height of the detection

probability function to form a 3D representation of the survey

effort (Figure 2B). The volume of each 3D shape was

calculated to approximate the integral of the detection
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function and survey area. The units of effort (km2) are a

measure of area; a perfect detection function (i.e., a detection

probability of 1.0 across all distances) would result in the exact

area of the rectangular survey areas. Only grid cells containing

survey effort were included in the models as an offset. The

centroids of each grid cell with effort were computed using the

‘sf’ package in R (Pebesma, 2018). Centroids were used to

associate sperm whale groups with more accurate

environmental data.

2.3.1 Environmental variables
The environmental predictor variables associated with each

grid centroid consisted of static bathymetric features and

dynamic remotely sensed variables. The latter were included

as indicators of mesoscale oceanographic processes to represent

sperm whale habitat and proxies for prey distribution (Table 3).

Static variables included seafloor depth, seafloor slope, seafloor

aspect, distance to islands, and distance to seamounts. Seafloor

bathymetric variables were obtained from the global bathymetry

and topography 15 arcsecond data set, SRTM15+ (Tozer et al.,

TABLE 2 Percentage of explained deviance, mean squared errors, total encounters, and selected environmental predictors for models comparing
data from left and right locations of localized acoustic encounters.

Model % of
explained deviance

MSE train MSE test Total encounters Environmental
predictors

Left Locations 7.83 0.014 0.014 116 SSHsd, LON:LAT

Right Locations 7.54 0.014 0.015 116 SSHsd, LON:LAT

Random Left/Right Locations 8.75 0.014 0.015 116 Temp at 584m, SSHsd, LON:LAT

FIGURE 1
Half-normal distribution detection function modeling the
detection probability of sperm whales as a function of the
distances estimated from the localized acoustic encounters (open
circles).

FIGURE 2
Diagram demonstrates the survey effort calculation method. (A) 1 × 16.22 km rectangles (light blue) on the left and right sides of the trackline
(orange) represent a sample of survey area computed along a straight trackline segment. Red dots indicate grid centroids. Gray shading in grid cells
represents the total amount of effort, which is the cumulative sum of the rectangles, or portion of rectangle, in each cell. Darker gray shades
represent more total effort. (B) A 3D representation of a single rectangle with the 10 equal pieces vertically extended to the height of the
detection function (yellow dashed line) to calculate the survey effort in each 16 km × 16 km grid cell.
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2019). Since aspect and slope were highly uncorrelated between

the left and right sides of localized acoustic encounters

(Supplementary Figure S1; r = 0, r = 0.27, respectively), they

were excluded to minimize uncertainty in the models.

The distance to land was obtained from the Global Self-

consistent, Hierarchical, High-resolution Geography Database

(GSHHG; Wessel and Smith, 1996). This variable addressed the

theory that sperm whales are typically found farther offshore,

which is also related to depth and suitable prey habitat.

Seamounts are isolated topographic seafloor features taller

than 100 m (Staudigel et al., 2010) that aggregate lower trophic

level communities, including cephalopods, a main prey item for

spermwhales (Clarke et al., 1993; Clarke, 1996; Clarke and Paliza,

2001; Clarke et al., 2007). Since many cetacean species are

associated with seamounts (Kaschner, 2007; Wong and

Whitehead, 2014) and roughly 600 seamounts exist within the

Hawaiian archipelago, we included the distance to seamounts as

a predictor variable. Locations of seamounts were extracted from

the Seafloor Geomorphic Features Map (Harris et al., 2014).

Distances to seamounts were computed with the ‘sp’ and ‘sf’ R

packages (Bivand et al., 2013; Pebesma, 2018).

A two-dimensional spatial term (longitude x latitude) was

included to explicitly account for geographic effects as well as

spatial autocorrelation and integrates over the entire time period

of all surveys (Miller et al., 2013; Becker et al., 2018). The

inclusion of a spatial term may result in explaining the

variation in the data not explained by the other

environmental predictors, but it limits the transferability of

the models to other study areas.

Remotely sensed dynamic variables included monthly sea

surface temperature (SST) and surface chlorophyll-a from

the Aqua Moderate Resolution Imaging Spectroradiometer

(MODIS) data set. Chlorophyll-a was log-transformed to

normalize the variance across the right-skewed observations

[log (Chla)]. Sea surface height (SSH), the standard deviation

of SSH (SSHsd) and eddy kinetic energy (EKE) were obtained

from the global ocean eddy-resolving physical reanalysis

data set (GLORYS12V1) generated by the Copernicus

Marine Environment Monitoring Service. The EKE is

given by:

EKE � 1/2(U2 + V2) (1)

where U and V are the zonal and meridional components of

geostrophic currents, respectively. The SSH, SSHsd, and EKE act

as mesoscale indicators of the ocean vertical structure and reflect

gradients in ocean circulation and density structure that may

influence the biological responses of lower trophic level

TABLE 3 Candidate environmental variables included as predictors for species distribution models.

Environmental variable Unit Resolution Relevance Data source

Static

Depth m 15 arc-sec Prey aggregations found in deeper water SRTM15+ (https://topex.ucsd.edu/WWW_html/
srtm15_plus.html)

Distance to shoreline km 15 arc-sec Proximity to land relates to areas of upwelling,
enhanced primary production

GSHHG (https://www.soest.hawaii.edu/pwessel/
gshhg/)

Distance to seamount km Interactions with currents influence prey
aggregations and primary production

Global Seafloor Geomorphic Dataset (http://www.
bluehabitats.org/?page_id=58)

Dynamic

Chlorophyll-a mg/m3 0.04°, monthly Proxy for prey availability

Sea surface temperature (SST)/
Standard deviation of SST

°C 0.04°, monthly Low SST/high SSTsd potentially associated with
increased prey aggregations or enhanced
productivity

Aqua MODIS (https://oceancolor.gsfc.nasa.gov/
data/aqua/)

Temperature at 584 m °C 0.33° Lat x 1° Lon,
monthly

Depth of prey species GODAS (https://psl.noaa.gov/data/gridded/data.
godas.html)

Sea surface height (SSH)/
Standard deviation of SSH

m 0.08°, monthly High SSH/SSHsd indicate eddies associated with
enhanced prey aggregations or primary
production

GLORYS12V1 (https://resources.marine.
copernicus.eu/?option=com_csw&task=results?
option=com_csw&view=details&product_id=
GLOBAL_REANALYSIS_PHY_001_030)

Eddy kinetic energy m2/s2 0.08°, monthly High EKE indicates stronger current velocities
that influence prey aggregations and primary
production

Wave power kW/m 0.45°, daily Wave power accounts for wave height and
period, indicator of energy movement through
water, high WP potentially associated with
changes in primary production

WaveWatch III
Global Wave Model (https://pae-paha.pacioos.
hawaii.edu/erddap/griddap/ww3_global.html)
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organisms (Polovina and Howell, 2005). Wave power (WP) is

given by:

WP � ρg2

64π
H2tp (2)

where ρ is the density of seawater (1,024 kg/m3) and g is the

acceleration of gravity (9.8 m/s2). Significant wave height, H,

and peak wave period, tp, were combined to represent a

metric for the size and strength of waves. Monthly

temperatures at 584 m were obtained from the Global

Ocean Data Assimilation System (GODAS) provided by

the NOAA Climate Prediction Center. We selected a

depth of 584 m as the best approximate depth of prey

habitat from the available options provided by the

GODAS data set. This depth corresponded with non-

migrant squid species (e.g., Histioteuthis hoylei) that tend

to inhabit waters deeper than 400 m and are commonly

found in sperm whale stomachs (Young, 1978; Clarke and

Young, 1998; Watanabe et al., 2006).

2.3.2 Model parameterization & evaluation
Generalized additive models are a statistical method

commonly used in species distribution modeling for

their flexibility in fitting complex, nonlinear species-

habitat relationships. The data drive the relationships

between the response and predictor variables without

assuming a specific formula (Guisan et al., 2002). To

relate the number of sperm whale groups per grid cell to

environmental data, we fitted GAMs using the “mgcv” R

package (v. 1.8–31; Wood, 2011) using a Tweedie

distribution with a log-link function given the sparse

encounter rate data and large numbers of zeros. Model

data sets were partitioned into a training and test set with

80% and 20% of the data, respectively. Correlations among

the predictor variables were found to be < |0.60|. The

natural logarithm of effort was included as an offset

variable to account for the variation in effort per grid cell.

Thin-plate regression splines were restricted to three

degrees of freedom (12 degrees of freedom for the spatial

smoother) to avoid overfitting the non-linear trends and

preserve the ecological interpretability of the relationships

(Forney, 2000; Ferguson et al., 2006; Roberts et al., 2016).

Parameter estimates were optimized using restricted

maximum likelihood (Wood, 2011). Model selection was

conducted with automatic term selection, determined by

the p-values of each predictor (Marra and Wood, 2011).

Initial models were built with all potential environmental

predictors. Non-significant (α ≥ 0.05) predictors were

removed, and models were refit until only significant

predictors remained.

SDMs were evaluated using a set of common evaluation

metrics calculated on the trained models and the models fitted

to the test datasets, including the percentage of explained

deviance and the mean squared error (MSE). Partial effects

plots were used to visualize the fitted smoothers and interpret

the relationship of the selected environmental variables with

the response variable.

3 Results

The post-processed acoustic data from the four surveys

resulted in 194 total sperm whale encounters (62 sighted

acoustic encounters, 74 trackline acoustic encounters, and

58 localized acoustic encounters) (Figure 3). Localized and

trackline acoustic encounters accounted for 68% of the total

sperm whale groups included in the models. A total of

115 acoustic encounters were identified as foraging groups

and 79 were designated as non-foraging groups. The click

types present in the foraging and non-foraging groups

varied by the encounter type (Figure 4). Sighted acoustic

encounters primarily included codas compared to the

localized and trackline acoustic encounters, which

consisted of mainly foraging and slow clicks. Detection

distances ranged from 0.3 to 15.5 km (median = 3.22 km,

mean = 4.7 km).

The foraging model had a lower percentage of explained

deviance (7.53%) than the non-foraging model (9.21%) with

similar MSE values for both models (Table 4). The best-fit

foraging model included temperature at 584 m depth (Temp

at 584 m °C), the natural log of chlorophyll concentration

(log (Chla)), and the 2D spatial smoother (Figure 5).

Foraging sperm whale groups peaked in the coolest and

warmest deep-water temperatures at 584 m depth but

declined with increasing chlorophyll concentration. The

2D smoother for the spatial term showed a majority of

foraging sperm whale groups occurring between Laysan

Island and Pearl and Hermes Atoll with another cluster of

foraging groups associated with the area north of the main

Hawaiian Islands.

The best-fit model for non-foraging sperm whale groups

selected the spatial term and the standard deviation of sea

surface height (Figure 6). More non-foraging groups were

predicted to be at lower values of SSHsd while the spatial

term depicted a relatively uniform spatial distribution of the

non-foraging groups across the study area with a moderate

increase towards the northwestern region of the Hawaiian

archipelago. Overall, no static environmental variables were

selected for either model.

4 Discussion

Accurately characterizing the distribution of a highly mobile

deep-diving marine species is difficult, especially in regions with

relatively low animal density and homogeneous environmental
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conditions. For sperm whales in the Hawaiʻi EEZ, we built SDMs

using visual and acoustic data to account for groups at the surface

and at depth to improve our understanding of their distribution

patterns and help inform population assessments. The addition

of acoustic encounters also allowed models to consider foraging

behavior and evaluate group demographics. Our findings suggest

that sperm whale groups feed at different rates throughout the

study area, offering a more direct ecological explanation of sperm

whale distribution patterns not always available from visual

observations alone.

The Hawaiʻi EEZ study area is influenced by the

surrounding oceanographic features of the North Pacific

FIGURE 3
Total foraging and non-foraging groups for each encounter type per survey year included in the model data sets.

FIGURE 4
Different combinations of click types present in the foraging and non-foraging groups per encounter type (localized, sighted, trackline).
“Forage” clicks include regular clicks and/or creaks.
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Subtropical Gyre. The northern end of the Northwestern

Hawaiian Islands (NWHI) is adjacent to broad frontal

zones that promote primary production, which attracts

higher trophic level organisms (Seki et al., 2002). The

northwesterly flow of the North Hawaiian Ridge Current

along the north side of the main Hawaiian Islands (Qiu

et al., 1997) may contribute to localized areas of upwelling

with enhanced primary production that may lead to patchy

aggregations of squids and other sperm whale prey. Eddies

and fronts are oceanographic features occurring throughout

the year in the study area, indicated by SSH, SST, and their

standard deviations, respectively (Qiu, 1999; Firing and

Merrifield, 2004; Polovina and Howell, 2005). These

mesoscale physical processes enhance nutrient

concentrations and primary production in the euphotic

zone, eventually benefitting lower trophic levels deeper in

the water column. However, the foraging model did not select

any predictors related to eddies or fronts, suggesting minimal

TABLE 4 Percentage of explained deviance, mean squared errors, total encounters, and selected environmental predictors for all models.

Model % of
explained deviance

MSE train MSE test Total encounters Environmental
predictors

Foraging 7.53 0.012 0.016 115 Temp at 584 m, log (Chl-a), LON:LAT

Non-Foraging 9.21 0.09 0.013 79 SSHsd, LON:LAT

FIGURE 5
Environmental predictors selected for the foraging model included temperature at 584 m, log of chlorophyll-a concentration [log (Chl-a)], and
the 2D spatial term (Longitude, Latitude). Light blue dots on the heat map of the spatial term represent encountered foraging sperm whale groups
and the black dots indicate surveyed areas included in the model. The black contour lines represent predicted number of whale groups on the link
scale and correspond with the color scale, increasing from dark to light colors.
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effects of these features on sperm whales foraging habitat.

Only the non-foraging model selected a predictor related to

these mesoscale processes, depicting a negative relationship

with SSHsd. Since the non-foraging groups primarily included

males and social sperm whale groups (identified by slow clicks

and codas, respectively), habitat with enhanced prey

communities are perhaps not as important compared to the

requirements of foraging animals. Lower SSHsd represents

less eddy activity and weaker currents, which may be related to

less optimal foraging habitat and sufficient conditions for

social groups at the time of detection. Overall, these results

further support the need to account for different sperm whale

behaviors in SDMs (Pirotta et al., 2011; Pace et al., 2018).

Our models included the best available oceanographic data

for the study region spanning a 4-year timeframe with no

climatological anomalies. Since each survey was conducted at

a similar time each year, no significant difference was found in

the environmental data across years. However, it only allows us

to make general inferences about the physical processes that may

be driving the overall distribution of spermwhale groups. Amore

focused study on the effects of mesoscale physical processes on

sperm whale prey would improve our understanding of the

potential drivers of sperm whale distribution and whether a

better predictor is available to represent this relationship in

the models.

We included the temperature at 584 m depth to account

for subsurface conditions at an average depth that represented

sperm whale prey habitat (Clarke and Young, 1998; Watanabe

et al., 2006). The temperature gradient at depth is a persistent

characteristic of the North Pacific Subtropical Gyre between

depths of ~250–600 m predicted by GODAS and consists of

warmer temperatures west of French Frigate Shoals in the

NWHI and cooler temperatures eastward near the main

Hawaiian Islands (Wang et al., 2000; Saha et al., 2006).

This gradient may be reflected in the correlations between

predictions of more foraging sperm whales and the upper and

FIGURE 6
Environmental predictors selected for the non-foraging model included the standard deviation of sea surface height and the 2D spatial term
(Longitude, Latitude). Light blue dots on the heat map of the spatial term represent all encountered non-foraging sperm whale groups and the black
dots indicate all surveyed areas included in the model. The black contour lines represent predicted number of whale groups on the link scale and
correspond with the color scale, increasing from dark to light colors.
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lower ranges of temperature at 584 m, possibly due to a higher

abundance of prey influenced by subsurface frontal zones or

consistent cold nutrient rich waters. Further research about

the prey composition and their depth range is necessary to

determine whether a biological explanation exists for the

relationship between foraging sperm whales and the

temperature at 584 m depth.

Since surface chlorophyll was used to represent prey

availability, the explanation for a negative relationship

between this variable and foraging groups remains unclear. If

results showed a positive relationship, we may infer higher prey

abundance in the area from the higher concentration of

phytoplankton. Previous work modeled sperm whale

occurrence and surface chlorophyll using either time-lagged

chlorophyll to account for its incorporation into the food web

(Giorli et al., 2016) or tested larger temporal and spatial scales to

investigate distribution patterns (Jaquet et al., 1996). One of these

methods may shed light on our counterintuitive results, but we

suspect that a more indirect link between surface chlorophyll and

sperm whale occurrence exists that the SDMs did not capture.

Investigation of other environmental variables that better

represent additional biological processes at depth may help

explain the negative relationship with surface chlorophyll.

Finding the appropriate dynamic variables for modeling the

distribution of deep-diving species is an ongoing topic of

research (Virgili et al., 2022).

Selecting the appropriate spatial resolution is a critical part of

configuring any SDM and depends heavily on the research

purpose (Redfern et al., 2008). We selected 16 × 16 km grid

cells as the most appropriate spatial scale to accommodate several

factors, including the acoustic detection distances, the spatial

resolution of remotely sensed data sets, and the homogeneous

environmental characteristics of the study area. The gridding

process included localized acoustic encounters from different

towed line arrays to model the detection probability. Ideally,

array-specific detection functions would be modeled to account

for different array detection ranges (e.g., lower effort values for

arrays with shorter detection ranges), but there were insufficient

localized encounters per array. Overall, the gridding process

introduced more absences in the data set compared to the

traditional trackline segment midpoint method of Becker et al.

(2010), which, coupled with homogeneous environmental data,

likely contributed to poor model performance. However, we now

have amodeling strategy that can include different types of sperm

whale encounter data and account for varying amounts of effort

at any spatial scale. These methods may be more successful when

applied to modeling cetacean distributions in more dynamic

study areas with greater oceanographic gradients and larger

variations in bathymetry.

We initiated this work expecting that localizing acoustic

encounters and using environmental data from the animal

location (rather than the trackline, as is done in Becker et al.

(2010, 2021) would improve upon the relatively imprecise

models presented in Becker et al. (2021) and Oleson et al.

(2015). Using localized detections following the methods of

Barkley et al. (2021), we explored this hypothesis within the

modeling process, and concluded that most environmental data

associated with the localized acoustic encounters were similar

between the left and right location estimates despite their

distance from the trackline. Therefore, the uncertainty in

model results from Oleson et al. (2015) could not confidently

be attributed to using environmental data associated with

trackline segments.

In general, it is inherently challenging to model the

distribution of sperm whales given their deep-diving

behavior and long detection ranges. Even with the

additional acoustic encounters and more precise association

of environmental data using the gridding method, it is difficult

to directly attribute the surface measurements from the

environmental data sets to sperm whales that may be

influenced by subsurface environmental conditions. The

sperm whale SDM presented in Becker et al. (2021) also

resulted in relatively low explained deviance and predicted

a similar distribution pattern as the foraging model’s spatial

term. However, building SDMs that accounted for different

encounter types and behavioral groups revealed that certain

sperm whale groups may not be well-represented in the

current sighting-based sperm whale SDMs for this region.

For example, over half of the foraging groups (66%) were

acoustically detected without visual confirmation presumably

due to their long foraging dives (Figure 4). Additionally, all

non-foraging trackline acoustic encounters with slow clicks

were missed by visual observers, indicating that small male-

only groups are likely under-represented in visual data-only

abundance analyses. Further, 61% of the total sighted acoustic

encounters included social groups producing codas (Figure 4),

groups that are easier to see at the surface. With the behavioral

information from passive acoustic data, we are able to identify

regions where sperm whales are more likely engaged in

foraging and also illustrate that these associations are not

well-represented within analyses that rely on visual data only.

Further analysis is necessary to evaluate the potential impacts

or biases that may emerge from excluding certain sperm whale

groups from abundance estimates and population

assessments.

This analysis is a step towards developing a better

understanding of sperm whale distribution in the Hawaiian

archipelago and provides an approach for incorporating

behavioral information from passive acoustics into cetacean

SDMs. A better ecological understanding of this population

may be gained through dedicated surveys in areas of higher

sperm whale density that focus on prey sampling and in situ

oceanographic measurements of dynamic subsurface variables

more related to their foraging habitat at depth. Deploying

archival tags to track dive and movement patterns and

record acoustic behavior would also provide valuable
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ecological insight. Future line-transect cetacean surveys should

continue to collect visual and passive acoustic data to better

understand which types of sperm whale groups are included in

population assessments and the regions that are more

important for foraging. Continued progress in environmental

data acquisition and ocean modeling will also help strengthen

the ability of SDMs to incorporate all available observational

data to improve our overall understanding of patterns in

cetacean distribution and ecology.
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